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A highly efficient local-piston theory is presented for the prediction of inviscid unsteady pressure loads at
supersonic and hypersonic speeds. A steady mean flow solution is first obtained by an Euler method. The classical
piston theory is modified to apply locally at each point on the airfoil surface on top of the local mean flow to obtain the
unsteady pressure perturbations caused by the deviation of the airfoil surface from its mean location without the need
of performing unsteady Euler computations. Results of two- and three-dimensional unsteady air loads and flutter
predictions are compared with those obtained by the classical piston theory and an unsteady Euler method to assess
the accuracy and validity range in airfoil thickness, flight Mach number, and angle of attack and with the presence of
blunt leading edges. The local-piston theory is found to offer superior accuracy and much wider validity range
compared with the classical piston theory, with the cost of only a fraction of the computational time needed by an

unsteady Euler method.

Nomenclature

aerodynamic stiffness matrix

speed of sound

aerodynamic damping matrix

airfoil semichord

lift coefficient

moment coefficient

pressure coefficient

plunge displacement at the elastic axis, positive down
cross-sectional mass moment of inertia about its
elastic axis

. = airfoil plunge stiffness, airfoil pitch stiffness

reduced frequency, w, - b/V

Mach number

airfoil mass per unit span

pressure

dimensionless radius of gyration about elastic axis
static moment per unit span

physical time

dimensionless static imbalance of the airfoil about its
elastic axis

reduced flutter speed

freestream speed

angle of attack, torsion deflection

airfoil steady (mean) background flow angle of attack
amplitude of the pitch motion
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n = mass ratio, m/mpb?

P = air density

T = dimensionless time, @, - ¢

w = circular frequency, rad/s

Wy, w, = uncoupled frequency of plunging and pitching

L.

ITH advances in computer technology and numerical

algorithms, time-domain methods based on coupling the
Euler or Navier—Stokes equations with structural dynamics equa-
tions have become a viable tool [1-4]. However, the major limitation
of this method is the excessive cost of computational time and also
the need of generating moving or deforming grids. Fast and accurate
prediction of unsteady loads and flutter for air vehicles at high speeds
remains to be a pressing engineering demand and an active research
topic.

The piston theory [5-7] is an inviscid unsteady aerodynamic
method that has been used extensively in supersonic and hypersonic
aeroelasticity. Its ease of application and acceptable accuracy within
its application range render the theory an effective tool for many
aeroelastic problems, such as supersonic panel flutter analyses [8].
However, two inherent undesirable features of the classical piston
theory invalidate its capability in general aeroelastic applications [9].
First, the theory is a strictly one-dimensional quasi-steady theory,
whereby no upstream influence could be accounted for. Second, it is
limited to thin wings at high Mach numbers and small angles of
attack. The range of valid Mach numbers depends on the thickness
and frequency parameters.

Linear-theory-based lifting-surface methods have been used for
unsteady supersonic flow problems, such as ZONAS51 code [10].
Nevertheless, these methods are confined to planforms of very thin
sections at small angles of attack, whereby neither thickness effect
nor angles of attack can be accounted for. A unified hypersonic-
supersonic lifting-surface method (ZONAS51U code [9]) has been
developed in which the concept of the piston theory is generalized
and suitably integrated with the aerodynamic influence coefficient
matrix due to linear theory. This unified method can account for the
effects of wing thickness and/or flow incidence, upstream influence,
and three-dimensionality for an arbitrary lifting-surface system in an
unsteady flow.

In this paper, a computational fluid dynamics (CFD)-based local
piston theory method is developed and used for supersonic and
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hypersonic flutter predictions. A steady flow solution is first obtained
by an Euler method on any geometry. The piston theory is then
applied locally at each point on the wing surface on top of the mean
steady flowfield to obtain the unsteady pressure perturbations caused
by the deviation of the surface from its mean location. Only one
steady-state CFD solution is required for a flutter prediction at any
one given flight condition. No time-domain unsteady computations
and moving grids are needed. On the other hand, because the piston
theory is applied locally, it greatly reduces the limitations of the
classical piston theory on the flight Mach number, the shape of the
airfoil, and the angle of attack.

II. Local Piston Theory

The classical piston theory can be found in a number of refer-
ences [5-7]. Here, we will simply state its basic assumptions and final
formulas. The piston theory assumes that disturbances spread along
the normal to the surface for M > 1, as if caused by the action of a
piston. From the use of the momentum equation and the assumption
of isentropic perturbations, one obtains the following basic piston
theory formula for the surface pressure:

— 1w\
p =poo(1 +VT;) (1)

where W is the downwash speed, a is the sound speed of the free-
stream, and y is the radio of the specific heats. Therefore, the surface
pressure coefficient becomes

2 y—1_ W\
=\ (1T e) 1) @

which we will call the full classical piston theory. For small pertur-
bations (M(W/a) < 1), however, we may use the linearized first-
order formula

2 (W
=3 (—) ®
or the second-order formula:
2 [W o y+1 (W)
CFW[Z*T(;” @

In all of the preceding formulations, it is assumed that the pistonlike
perturbation W is relative to the freestream conditions. As such, it
must be limited to small perturbations, even though it contains both
the disturbances by the mean position of the body and the unsteady
fluctuations of the surface around its mean position. The latter can be
assumed to be small for typical flutter applications, whereas the
former may not unless we are limited to thin bodies and small angles
of attack. To remove the limitations on the mean position of the body,
we can separate the steady mean flow from the small unsteady
fluctuations. This can be accomplished by solving the steady Euler
equations for the full geometry. At each grid point on the surface, we
may then apply the preceding piston theory relative to the local
flowfield with the downwash caused by the deviation of the moving
surface relative to its mean location. Figure 1 shows the decom-
position of the local downwash velocity due to the motion of the

n

v,

o

_—
Fig. 1 Local velocity decomposition.

surface V. By applying Eq. (1) locally and keeping only the first-
order terms, we obtain the following local piston theory:

P=P + pa,W
W=V,'(§n+Vb~n (5)

n=ny,—n

where n,, is the outward normal unit vector before deformation; » is
the outward normal unit vector after deformation; W is the local
downwash speed due to both deformation V, -d§n and vibration
V, - n; P, p,, a;, and V, are the local pressure, density, sound speed
and flow velocity, respectively, on the mean wing surface computed
by the full three-dimensional steady Euler method.

Compared with the classical piston theory, the preceding local
piston theory accounts for three-dimensional effects and upstream
influence through the use of the local mean flow. Because the local
unsteady deviations are indeed small, the accuracy of the piston
theory as applied locally is guaranteed, provided the local Mach
number is not too low. In addition, even if the mean flow may not be
isentropic because of the existence of shock waves, the unsteady
perturbations locally at each grid point on the wing surface caused by
the small deviations from its mean location may be regarded as
isentropic. In terms of computational effort, only one steady-state
solution is needed for each flight condition. The local piston theory
yields an explicit algebraic point-function relationship, which is
almost zero-cost computationally, between the unsteady pressure
perturbations and the local airfoil motion or deformation. Therefore,
the local piston theory greatly extends the range of applicability and
accuracy of the classical piston theory at the cost of only one steady
Euler solution for calculating unsteady aerodynamic loads at super-
sonic or hypersonic conditions.

III. Computation of Unsteady Aerodynamic Loads

To assess the validity and accuracy of the preceding local piston
theory, we apply it to compute the unsteady pressure distributions
and aerodynamic loads of some typical supersonic airfoils and
compare the results with those by the classical piston theory and a full
unsteady Euler code. Validation of the Euler code with experiments
for steady and unsteady flow was documented in [11,12].

We first consider a symmetric circular-arc airfoil pitching around
its quarter-chord position. The motion of the airfoil is described by
a =y + da - sin(w - 1), where « is the mean angle of attack, o is
the amplitude of the pitching motion, and w is the frequency. The
base airfoil has a thickness of 4% chord. The base flow conditions are
chosen to be flight Mach number M =5, mean angle of attack
oy = 0, pitching amplitude o = 1deg, and a reduced frequency
k = (wb/V) = 0.1. The classical piston theory is limited to only thin
airfoils with sharp leading edges, small mean angle of attack, and
limited Mach number range. In the following subsection, we vary the
airfoil thickness, mean angle of attack, and flight Mach number to
assess the expanded application range and enhanced accuracy of
the local piston theory. We also investigate the applicability of the
local piston method to an airfoil with a round leading edge (the
NACAOQ012 airfoil). The time histories of the aerodynamic coef-
ficients (including C,, C,, and C,) and the first mode of their Fourier
expansions are compared with results of the full classical piston
theory given by Eq. (2) and the full unsteady Euler computations for
the various test cases. The unsteady Euler solutions are used as the
benchmark solutions.

A. Effect of Airfoil Thickness

Figure 2 compares the first harmonic of the time-dependent lift and
moment coefficients computed by the three methods for the airfoil
thicknesses ranging from 4 to 16%. The phase of the lift coefficients
by all three methods agrees well with each other for the complete
thickness range. The amplitude of the two approximate methods,
however, starts to deviate from that by the full unsteady Euler compu-
tations at thicknesses above 8%. The local piston theory agrees more
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Fig. 2 Amplitude and phase of the first harmonic of C; and C,, vs
thickness of the circular-arc airfoil, M = 5 and o, = 0.

closely with the Euler predictions for the larger thickness values. The
advantages of the local piston theory are clearly seen in the moment
coefficients. Both the amplitude and phase of the moment coefficient
computed by the classical piston theory start to show large errors
compared with the full unsteady Euler results for thicknesses above
8% and the errors become unacceptably large and diverge quickly as
the thickness increases beyond 12%. The local piston theory,
however, shows consistently better accuracy for the complete range
of thicknesses. The errors are all within acceptable limit and do not
diverge. Figure 3 shows the time histories of C; and C,, for the 12%
thickness airfoil. The errors in C,, by the classical piston theory are
obvious, whereas those by the local piston theory are much smaller.
Figure 4 compares the first harmonics of the unsteady pressure
distribution on the same airfoil. The large error of the classical piston
theory appears to be near the leading edge, which explains the large
error in the moment coefficient. The local piston theory predictions
closely follow those by the unsteady Euler code even for this large
airfoil thickness.

B. Effect of Angle of Attack

Figure 5 shows the first harmonic of C, and C,, at different mean
angles of attack for the base 4% thickness airfoil. Other flow
conditions are fixed and the same as the base conditions. The
classical piston theory incurs monotonically increasing errors in the
amplitude of both the lift and moment coefficients as the mean angle
of attack increases and the errors become very large when the mean
angle of attack is greater than 10 deg. The local piston theory,
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Fig. 3 Time histories of C; and C,, for the 12% thickness circular-arc
airfoil, M = 5 and &y = 0.
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Fig. 4 Amplitude and phase of first harmonic of C, for the 12%
thickness circular-arc airfoil, M = 5 and o, = 0.

however, maintains high accuracy even for angles of attack up to
20 deg. The errors in the moment coefficient are a little more than
those in the lift coefficient at the very large angles of attack, but
remain still small. Figure 6 shows the time history of C; and C,, for
oy = 15 deg, which corroborate on the same conclusions. Addition-
ally, it shows that the mean level of the unsteady lift coefficient
predicted by the classical piston theory is off significantly from the
unsteady Euler solutions because of its approximate nature in
predicting both the mean flow and the unsteady fluctuations at high
angles of attack. The local piston theory eliminates this error in the
mean flow through the use of local mean flow conditions that are
accurately predicted by the steady Euler code. Figure 7 shows the
first harmonics of the pressure coefficient distribution on the airfoil.
As in the thickness studies, the local piston theory shows superior
performance over the classical piston theory, which predicts an
erroneous unsteady pressure amplitude on the pressure surface of the
airfoil because of the existence of a strong shock from the leading
edge of the airfoil at the 15 deg high mean angle of attack. The
classical piston theory calculates the unsteady pressure perturbations
from the freestream flow upstream of the shock rather than using the
local flow conditions behind the shock.
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C. Effect of Freestream Mach Number

The same preceding 4% base circular-arc airfoil test case is
studied. Figure 8§ compares the amplitude and phase of the first
harmonic of the computed C, and C,, at flight Mach numbers from
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Fig. 7 Amplitude and phase of the first harmonic of C, for the 4%
circular-arc airfoil at M = 5 and oy = 15deg.
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Fig. 8 Amplitude and phase of first harmonics of C; and C,, vs flight
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1.5 to 15. This time, however, the flow conditions are chosen to be
oy =5deg, da = 1deg, and k= 1. The classical piston theory
deteriorates as the Mach number increases, except for the phase of C;.
The local piston theory maintains reasonably high accuracy even for
Mach numbers up to 16. The typical unsteady pressure distributions
on the airfoil is illustrated by those at M = 12, as shown in Fig. 9. The
large discrepancy of the pressure amplitude on the pressure surface
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Fig. 9 Amplitude and phase of the first harmonic of C, on the 4%
circular-arc airfoil at M = 12.

by the classical piston theory is due to the nonzero mean angle of
attack, as discussed earlier, and made worse by the high Mach
number. The local piston theory improves the accuracy on both
fronts.

D. Effect of Leading-Edge Shape

The classical piston theory is limited to airfoils with sharp leading
edges. It fails when the slope of the airfoil approaches infinity at the
round leading edge of a blunt airfoil. The NACAO0O012 airfoil is here
used to demonstrate the feasibility of applying the local piston theory
method to an airfoil with a round leading edge. We study the
NACAO0012 airfoil at M = 8, k = 0.1, oy = 0deg, and do = 1 deg.
Figure 10 shows the time histories of the computed C,; and C,, for this
case. Unacceptably large errors in both C; and C,, are found in the
classical piston theory. The local piston theory, on the other hand,
gives surprisingly good predictions, especially for C,. Figure 11
shows the first harmonic of the unsteady pressure on the airfoil. The
local piston theory removes the singularity present in the classical
piston theory, because it calculates the unsteady pressure loads by
perturbing from the local flow conditions that have been correctly
calculated by the steady Euler code, which takes care of the full
thickness and rounded leading-edge shape without presenting any
false singularities. The strict validity of the piston theory in a

. Unsteady Euler
0.04 1 —————— Local piston
------- Classical piston

ARy [ Ry .-~

-0.04 : ‘ ‘ ‘ :
50 100 150 200 250
T
. Unsteady Euler
0.02 Local piston
....... Classical piston
001}

n

-0.01 | e

0.02 . . . . .
50 100 150 200 250

T
Fig. 10 Time histories for the NACA0012 airfoil.
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subsonic region is questionable even when it is applied locally. It may
be fortuitous here that reasonably good results are obtained, but two
factors are worth noting. First, the subsonic region is small and
enclosed. Second, the major failure of the classical piston theory here
is because of the spurious singularity at the leading edge.

IV. Flutter Computations

The preceding section demonstrates that the local piston theory
greatly improves the accuracy and extends the range of applicability
of the classical piston theory for calculating supersonic and hyper-
sonic unsteady aerodynamic loads. Large disturbances and non-
linearity caused by thickness, mean angle of attack, flight Mach
number, and blunt leading edges are accounted by the steady Euler
computation. Its computational efficiency lends it to use for fast
flutter simulations and predictions. We consider the following modal
equation as the general structural model:

M-§E+G-E+K-E=F ()

where £ is the generalized coordinate; M, G, and K, are the mass,
damping, and stiffness matrices, respectively; and F is the gene-
ralized aerodynamic force vector, for which the components are

F; =//p(x,y,z, H®;(x,y,z)ds
=q-//Cp(x,y,z, NP;(x,y,2)ds

where ®, is the ith mode shape. A coupled fluid—structure simulation
algorithm [13] can be used to integrate Eq. (6) in the time-domain
along with any unsteady flow solver to determine the characteristics
of the coupled aeroelastic system. Several such time-domain
simulations are needed to determine the flutter boundary for each
flight condition. Validation of the time-domain simulation method
with the unsteady Euler flow solver for flutter predictions was
documented in [12-14]. We can adopt the same coupled time-
domain simulation method with either the classical or the local piston
theory as the flow solver, both of which are far more efficient
computationally because they involve only algebraic equations to
determine the unsteady air loads.

With the local piston theory, however, an even more efficient
alternative method can be used without having to perform such time-
domain coupled simulations. Because of the linear algebraic
dependence as given in Eq. (3) of the unsteady pressure (p—p;) on the
local downwash velocity W, which in turn can be expressed as
explicit linear functions of the local wing geometry and its moving
velocity, one can obtain the following explicit expression for the
generalized aerodynamic force F:
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pv? oV g
F = i A-E+ i B-& (7)
where A and B are the aerodynamic stiffness and damping matrices,
respectively, the particular forms of which depend on the wing
geometry and the mode shapes. Detailed formulas can be found in
[12]. Substituting Eq. (7) into Eq. (6), we then obtain the following
flutter equation:

£.€ =C-[t.& ®)

0 I
¢= (Ml("MVzA-K) /;;MIB)

The flutter boundary can then be easily determined by computing the
eigenvalue root loci of the matrix C vs V or p with little com-
putational effort. Both this method and the time-domain coupled
simulation method with the local piston theory as the flow solver
have been performed for a number of test cases and found to give
identical results. Because of its computational efficiency, results
presented in this paper for the local piston theory are obtained by the
eigenvalue analysis, which is several orders of magnitude more
efficient than the time-domain unsteady Euler method, because it
requires only one steady-state Euler computation for each flight
condition.

In the following two subsections, we investigate application of the
local piston theory to airfoil and wing flutter problems and compare
the results with those by the classical piston theory and the full
unsteady Euler computations.

where

A. Airfoil Test Cases

The following standard pitching and plunging model is used for
two-dimensional airfoils:

mi + 8,6 + Kyh = —L
{ g )

S h+ 1,6+ Ko=M

In the form of Eq. (6), after defining the dimensionless time T = o, - t
and the generalized coordinates

-{r)
we obtain

1 20
M:|: );gti|7 GIO, K:|:(wh/0wa) 2i|

rd

_ 1 _C[ _ 1 %2 _Cl
F‘M{zcm} =2V {20,,,}
where k = w, - b/Vs, = m/mpb*, and Vi =V /(w, - b - u'/?)
are the reduced frequency, mass ratio, and the dimensionless speed
index, respectively. The following structural parameters are used in
the computations: a = 0, x, = 0.25, r2 = 0.75, w,,/w, = 0.5, and
n="175.

Two representative airfoils are considered: the 4% thickness
circular-arc airfoil with a sharp leading edge and the NACA64A010
airfoil with a round leading edge. Figure 12 compares the computed
flutter speed of the circular-arc airfoil for different flight Mach
numbers at a 5 deg fixed angle of attack. The first-order, second-
order, and precise piston theories labeled in the figure refer to the
three levels of approximation of the classical piston theory given by
Egs. (2-4), respectively. As the Mach number increases, all three
forms of classical piston theory incur an increasing amount of error.
The accuracies of the three forms are in line with their corresponding
order of the Taylor expansions, with the precise piston theory of
Eq. (2) being the best. The local piston theory, however, gives
consistently better predictions for the whole range of Mach numbers
up to 10, with little error compared with the full unsteady Euler
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= r
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Fig. 12 Flutter speed vs Mach number for the circular-arc airfoil at a
5 deg angle of attack.

simulations. Figure 13 plots the flutter boundary of the same airfoil at
the fixed flight Mach number M = 6, but for different angles of
attack. The same observations can be made. This time, the local
piston theory predictions almost exactly match those by the full
unsteady Euler simulations. Considering the high accuracies of the
local piston theory in predicting the unsteady air loads as presented in
the last section, this level good agreement in flutter predictions is not
surprising.
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M =6.
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Fig. 14 Flutter speed vs M for the NACA64A010 airfoil at a 5 deg angle
of attack.
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Figure 14 compares the computed flutter speed of the
NACA64A010 airfoil for different flight Mach numbers at a 5 deg
fixed angle of attack. Figure 15 plots the results at the fixed flight
Mach number M = 6, but for different angles of attack. Large errors
exist of the classical piston theory results, except for low flight Mach
numbers and at small angles of attack. Somewhat surprisingly, the
second-order classical piston theory gives better results than the

[ ) Unsteady Euler
Local Piston

= = = = 1st Order Piston
——— 2nd Order Piston
——— = Precise Piston

25

| L B |

0.5

(X/O
Fig. 15 Flutter speed vs angle of attack for the NACA64A010 airfoil at
M =6.
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precise classical piston theory, but this is really a misleading paradox,
because the classical theory simply is invalid for such an airfoil with a
round leading edge because of the leading-edge singularity. The
predictions by the local piston theory, although not as good as those
for the circular-arc airfoil with a sharp leading edge, are arguably still
within usable range.

B. Three-Dimensional Test Case

A trapeziform rudder with diamond airfoil section shown in
Fig. 16 is used as a three-dimensional test case. Flutter experiments
for this rudder were performed in [15] by tuning the structure to
approach flutter at different flight conditions. To avoid uncertainties
involved in the experiment and potential inaccuracy in the deter-
mination of the structural modes, we focus here on one fixed structure
model. The first two mode shapes and modal frequencies of this
model are shown in Fig. 17. The experimentally determined flutter
speed is 606 m/s at Mach number 3.01 and 3.5 deg angle of attack
with a freestream air density of 0.3362 kg/m?. Figure 18 shows the
time histories of the computed generalize coordinates of the coupled
unsteady Euler simulations at the subcritical, critical, and super-
critical flight speed at the given Mach number, angle of attack, and air
density. Based on these simulations, the flutter speed is determined to
be 618 m/s with the unsteady Euler method. Figure 19 depicts the
root loci with the local piston theory method for this case, for which
we determine 614 m/s as the flutter speed, which agrees with the
predictions by the unsteady Euler method and is close to the
experimental data.

We next increased the angle of attack with all other conditions
fixed and performed the same computations. The predicted flutter
speeds by the three methods are shown in Fig. 20. The classical piston
theory in its full form agrees well with the local piston theory and the
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Fig. 17 Mode shapes and modal frequencies for the rudder.
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Fig. 16 Shape of the rudder.
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Fig. 18 Responses of the ruder at different speeds by the unsteady
Euler method at « = 3.5deg and M = 3.01.



2328 ZHANG ET AL.

400 T T
flutter|speed = 613 (m/s)
3501 g {
3001 < T
©o %6 o ° al
» 250f 0 gy 1
<
©
@ 200 T
£
150r T
100r T
50 T
0 - -
-10 -5 0 5 10
real axis

Fig. 19 Root loci by the local piston method at « =3.5deg and
M =3.01.
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Fig. 20 Flutter speeds of variation with angle of attack at M = 3.01.

full unsteady Euler method at low angles of attack. The errors of the
classical piston theory increase significantly as the angles of attack
increases beyond 5 deg, resulting in large underpredictions of the
flutter speed. The local piston theory, on the other hand, almost goes
through the predictions by the full unsteady Euler method in the full
range of angle of attack up to 20 deg.

V. Conclusions

The classical piston theory is an extremely efficient method to
calculate unsteady aerodynamic loads over slender wings with sharp
leading edges at small angles of attack and not-too-low but also not-
too-high supersonic speeds. Methods based on the unsteady Euler or
Navier—Stokes equations remove those limitations but are compu-
tationally expensive and involve complexities in dealing with
moving and deforming grids. We developed a highly efficient local
piston theory for the prediction of inviscid unsteady pressure loads at
supersonic and hypersonic speeds. Unlike the classical piston theory,
this local piston theory separates the total air loads into a steady mean
part caused by the mean location of the wing and that of unsteady
fluctuations due to the motion of the wing around its mean location.
The steady mean flow solution is first obtained by a full Euler
method, which removes limitations on the airfoil thickness, angle of
attack, flight Mach number, and leading-edge sharpness. The
classical piston theory is then applied locally at each point on the
airfoil surface on top of the mean steady flow to obtain the unsteady
pressure perturbations caused by the relatively small deviation of the
airfoil surface from its mean location. The resultant local piston
theory is shown to have essentially removed the limitations of the
classical piston theory on flight Mach number, airfoil thickness, and
angles of attack for practical purposes. In addition, the method is also

demonstrated to yield reasonable accuracy for airfoils with round
leading edges in a supersonic flow. Compared with the unsteady
Euler method, which needs hundreds or even thousands of equivalent
steady solutions with moving or deforming grids, the local piston
theory requires only one steady-state solution without the use of
moving or deforming grids. Its linear functional form of the unsteady
pressure on the shape and velocity of the wing surface also makes it
possible to perform flutter predictions by using the eigenvalue
method with no need to perform time-domain coupled fluid-
structure simulations.
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